Selected publications:
Jung M, Raghu VK, Reisert M, et al. Deep learning-based body composition analysis from whole-body magnetic resonance imaging to predict all-cause mortality in a large western population. eBioMedicine. 2024;110:105467. http://doi.org/10.1016/j.ebiom.2024.105467
Kellner E, Sekula P, Lipovsek J, et al. Imaging markers derived from MRI-based automated kidney segmentation. Deutsches Ärzteblatt international. 2024. http://doi.org/10.3238/arztebl.m2024.0040
Schlett CL, Hendel T, Hirsch J, et al. Quantitative, Organ-Specific Interscanner and Intrascanner Variability for 3 T Whole-Body Magnetic Resonance Imaging in a Multicenter, Multivendor Study. Investigative Radiology. 2016;51(4):255-265. http://doi.org/10.1097/RLI.0000000000000237
Küstner T, Hepp T, Fischer M, et al. Fully Automated and Standardized Segmentation of Adipose Tissue Compartments via Deep Learning in 3D Whole-Body MRI of Epidemiologic Cohort Studies. Radiology: Artificial Intelligence. 2020;2(6):e200010. http://doi.org/10.1148/ryai.2020200010
Schuppert C, Krüchten RV, Hirsch JG, et al. Whole-Body Magnetic Resonance Imaging in the Large Population-Based German National Cohort Study: Predictive Capability of Automated Image Quality Assessment for Protocol Repetitions. Invest Radiol. 2022;57(7):478-487. http://doi.org/10.1097/RLI.0000000000000861
Kart T, Fischer M, Winzeck S, et al. Automated imaging-based abdominal organ segmentation and quality control in 20,000 participants of the UK Biobank and German National Cohort Studies. Sci Rep. 2022;12(1):18733. http://doi.org/10.1038/s41598-022-23632-9
Gatidis S, Kart T, Fischer M, et al. Better Together: Data Harmonization and Cross-Study Analysis of Abdominal MRI Data From UK Biobank and the German National Cohort. Invest Radiol. 2023;58(5):346-354. http://doi.org/10.1097/RLI.0000000000000941
Haueise T, Schick F, Stefan N, et al. Analysis of volume and topography of adipose tissue in the trunk: Results of MRI of 11,141 participants in the German National Cohort. Sci Adv. 2023;9(19):eadd0433. http://doi.org/10.1126/sciadv.add0433
Fischer M, Küstner T, Pappa S, et al. Identification of radiomic biomarkers in a set of four skeletal muscle groups on Dixon MRI of the NAKO MR study. BMC Med Imaging. 2023;23(1):104. http://doi.org/10.1186/s12880-023-01056-9
Schuppert C, Rospleszcz S, Hirsch JG, et al. Automated image quality assessment for selecting among multiple magnetic resonance image acquisitions in the German National Cohort study. Sci Rep. 2023;13(1):22745. http://doi.org/10.1038/s41598-023-49569-1